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Stochastic simulation of dissipation and non-Markovian effects in open quantum systems
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The exact dynamics of a system coupled to an environment can be described by an integro-differential
stochastic equation for the reduced density. The influence of the environment is incorporated through a mean
field which is both stochastic and nonlocal in time and where the standard two-time correlation functions of the
environment appear naturally. Since no approximation is made, the presented theory incorporates exactly
dissipative and non-Markovian effects. Applications to the spin-boson model coupled to a heat bath with
various coupling regimes and temperature show that the presented stochastic theory can be a valuable tool to
simulate exactly the dynamics of open quantum systems. Links with the stochastic Schrodinger equation
method and possible extensions to “imaginary time” propagation are discussed.
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I. INTRODUCTION

Numerous concepts in our understanding of quantum me-
chanics have emerged from the understanding and descrip-
tion of a system coupled to an environment: measurement,
decoherence, appearance of classical world, irreversible pro-
cesses, dissipation, and so on. All these phenomena, which
are often encompassed in the “theory of open quantum sys-
tems,” bridge different fields of physics and chemistry [1-3].
During the past decade, important advances have been made
in the approximate and exact descriptions of system embed-
ded in an environment using stochastic methods. Recently
the description of open quantum systems by the stochastic
Schrodinger equation (SSE) has received much attention
[3-5]. Nowadays, Monte Carlo wave-function techniques are
extensively used to treat master equations in the weak cou-
pling and/or Markovian limit [3,4,6—12].

Great theoretical effort is actually devoted to the introduc-
tion of non-Markovian effects. Among the most recent ap-
proaches, one can mention either deterministic approaches
like the projection operator techniques [13,14] or stochastic
methods like quantum state diffusion [15-18] where non-
Markovian effects are accounted for through nonlocal
memory kernels and state vectors evolve according to
integro-differential stochastic equations. In some cases, these
methods have been shown to be exact [5,19].

Recently, alternative exact methods [20,21] have been de-
veloped to treat the system+environment problem that avoid
evaluation of nonlocal memory kernels, although non-
Markovian effects are accounted for exactly. However, up to
now, only a few applications of these exact techniques exist
[20-25]. In all cases, accurate description of the short-time
dynamics is obtained but long-time evolution can hardly be
described due to the large increase of statistical errors with
time. Although the possibility of simulating exactly the dis-
sipative dynamics of open quantum systems is already an
important step, description of long-time evolution is highly
desirable to make the techniques more powerful and versa-
tile.

II. EXACT STOCHASTIC EQUATION
FOR THE REDUCED SYSTEM DENSITY

A. Introduction

In the present work, starting from the exact stochastic
formulation of Ref. [21] and projecting out the effect of the
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environment, an equation of motion for the reduced system
dynamics is obtained where the environment effect is incor-
porated through a stochastic mean field which turns out to be
nonlocal in time. Advantages of this stochastic theory for the
description of long-time evolution of open quantum systems

are underlined. We consider here a system (S)
+environment (E) described by a Hamiltonian
H:hs+hE+h], (1)

where hg and hy denote the system and environment Hamil-
tonians, respectively, while 4; is responsible for the coupling.
Here we assume that the interaction is written

h]=Q®B, (2)

where Q=f({Q}i1,,) and B=g({B},., ) correspond to
functions of two sets of operators of the system and environ-
ment, respectively. In particular, this definition includes non-
linear couplings. For the sake of simplicity, we assume an
initial separable density D(1y) = ps(ty) ® pp(to). As will be dis-
cussed below, this assumption could be relaxed. The exact
evolution of the system is described by the Liouville-von

Neumann equation iAD=[H,D]. Due to the coupling, the
simple separable structure of the initial condition is not pre-
served in time. It has, however, been realized recently in
several works using either the SSE or path integral technique
that the exact density of the total system D(z) can be obtained
as_an_average over simple separable densities, i.e., D(7)
=ps(t) ® pp(?). In its simplest version, the stochastic process
takes the form [21]

dt
dps= E[hs,Ps] +d&Qps+ dhspsQ,
(3)
dt
dpg= l._ﬁ[hEPE] +dégBpg + d\pppB.,
where the Ito convention for stochastic calculations is used

[26]. d&gp and d\g; denote Markovian Gaussian stochastic
variables with zero means and variances,

— dt dt
désdép = PE dNgdNp=— P (4)
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dégdNg = dNgdéL=0. (5)

The average over stochastic paths described by Egs. (3)
matches the exact evolution. Indeed, assuming that at time ¢
the total density is written D(r)=pg(t) ® pg(t), the average
evolution over a small time step dt is given by

dD =dps ® p+ ps ® dpg+dps ® dpp. (6)

Using statistical properties of stochastic variables [Eqs. (4)
and (5)], we obtain

dt
dps ® pg+ pS®dpE=i_h[hS+hEapS® pPels (7)
—_—  dt
dps ® dpp= %[Q ® B,ps ® pgl. (®)

Therefore, the last term simulates the interaction Hamil-
tonian exactly and the average evolution of the total density
over a time step dr reads

dD = i—[H,D], 9

which is nothing but the exact evolution. Here, the exactness
of the method is proved assuming that the density D(z) is a
single separable density. In practice, the total density at time
t is already an average over separable densities obtained
along each stochastic path, i.e., D(¢)=pg(t) ® pg(). Since Eq.
(9) is valid for any density written as pg(f) ® pg(z), by sum-
ming individual contributions, we deduce that the evolution
of the total density obtained by averaging over different
paths is given by iAdD=df[H,D(r)] which is valid at any
time and corresponds to the exact system+environment dy-
namics.

B. Stochastic mean-field dynamics

Here, a slightly modified version of the stochastic process
is used. It incorporates part of the system-environment cou-
pling using a “mean-field” approximation in the determinis-
tic evolution. Following Ref. [21], we consider the coupled
stochastic evolutions, called hereafter the stochastic mean
field (SMF):

dps= 5 Th+ (B0}, Q03] + 4E[Q - QU)o
+dNgps Q - (Q(1))s],
(10)
dpg= ld_ht[hE +(Q(0))sB.pg] + d&g[B - (B(1))£]pe

+d\gpeB — (B(1))£],

where

Q)5 =TrQps(1)]. (B(1))r=Tr[Bpg(r)]. (11)

The SMF version also provides an exact reformulation of the
system+environment problem. Indeed, the two terms in Eqgs.
(7) and (8) now read
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dt
dps ® pp+ps ® dpp= i—h[hs +(B(1))£Q.ps ® pg]

d
+ é[hE"' (Q(1))sB.ps ® pgl,

405 & dpr = S11Q Q)] © [B~ (B0}, Lo & el

and properly recombine to recover Eq. (9).
1. Properties of the SMF theory

Equations (10) have several advantages compared to the
simple version [Eqgs. (3)]. First, this stochastic process auto-
matically ensures that Tr(pg)=Tr(pg)=1 along the stochastic
path. In addition, the inclusion of a mean-field term in the
deterministic part will always reduce the statistical disper-
sion compared to the simple stochastic process given by Egs.
(3). This reduction could be significant if quantum fluctua-
tions of the coupling operators Q and B remain small along
each path [21,27]. Indeed, at any time, a measure of the
statistical fluctuations is given by

N = TH{[D7(#) = D' (1) [[D(r) - D(1) ]}
=Ti[D'D(1)] - TH{D(1)*]. (12)

Starting from the total density associated with a pure state,
the evolution of Ay, over a small time step is directly con-
nected to the average quantum fluctuations of Q and B, i.e.,

o= S TCQs (@) + (B~ BB, (13)

where we have assumed implicitly that all second moments
except those given in Egs. (4) and (5) cancel out. For com-
parison, the growth of statistical fluctuations associated with
the stochastic process without the mean field [Egs. (3)] reads

2dt —— ——
= (@ + B, (14

Equation (13) illustrates that the number of trajectories re-
quired to simulate the system dynamics will depend on the
importance of the quantum fluctuations of the coupling op-
erators along each path. In addition, a comparison between
Egs. (13) and (14) illustrates that the introduction of the
mean field will always improve the numerical accuracy.

C. Reduced system evolution

In Eq. (10), the influence of the environment on the sys-
tem enters only through (B(7))z. One expects in general to
simplify the treatment by directly considering this observable
evolution instead of the complete py evolution. To express
(B(1))g, we introduce the environment evolution operator

1

Uglt,t') Eexp(%hlg(t—t')) (15)
i

Defining the new set of stochastic variables dvp and dug

through dér=dvg—iduy and d\gp=dvg+idug, the evolution
of pg(t) can be integrated as
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. " ds
pe(t) = Ug(t,10) pp(ty) Ug(t, 1) + f £<Q(S)>SUE(LS)
0

X[B, pe(s) UL (1,5) + f dvop(s)Ug(t,s)
0

t

X[B = (B(s))p, pe(s) 1, Up(1,5) = i f dug(s)Ul(t,s)
0

X[B = (B(5)) . pe(s) 1U(1,5). (16)

Introducing also the new variables dug and dvg defined as
dés=dug—idvg and d\g=dug+idvg, the stochastic equation
on the reduced density reads

d
dpg= é[HS(I)J)S] +dug[Q - (Q(1))s, ps]:

—idvg[Q —(Q(1))s. ps] (17)

with H(#) = hg+(B(#))Q and where the source term (B(7))z
takes the exact form

(B(1))=TrB'(t - 19) pi(t9)] - %f D(t,5){Q(s))sds
0

- f[D(t,s)duE(s) + JtDl(t,s)dvE(s). (18)
0

0

Here, B/(t—s)= U}(t,s)BUg(t,s) while D and D, are defined
by

D([,S) = i<[B’Bl(t_s)]>E’ (19)

D (t,s) = {[B - (B(5))z.B(t = 5)])z, (20)

where the environment expectation values are taken at time
s, i.e., (-+)¢=Tr[---pg(s)]. The two coupled equations (17)
and (18) provide an exact reformulation of the system evo-
lution if dugr and dvgy satisfy

dugd dvgd di
usdup = =,
sdUp=avsdvg )
duSdUE=dUSduE=0. (21)

In the following, we simply assume that the first term in Eq.
(18) cancels out. Substituting Eq. (18) into Eq. (17), we fi-
nally obtain an integro-differential stochastic equation for the
exact system evolution where the environment effect has
been incorporated through the two memory functions (19)
and (20). The interesting aspect of replacing Eq. (10) by Egs.
(17) and (18) is that, in many physical situations, one can
generally take advantage of specific commutation and anti-
commutation properties of B as well as flexibility in the
noise to obtain an explicit form of the memory functions.

III. APPLICATION TO A SYSTEM COUPLED TO A HEAT
BATH

The method is illustrated for systems coupled to an envi-
ronment of harmonic oscillators initially at thermal equilib-
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rium and it shows that the present stochastic theory can be a
valuable tool to simulate exactly open quantum systems. We
take

2

1

hp= >, ( Pn | —mnwixi) (22)
2m, 2

n n

and B=-3,k,x, [3]. The statistical properties of the sto-
chastic variables dugy and dvgy specified above do not
uniquely define the Wiener process. A simple prescription is
to further assume

dusdus = dMEduE = dvsdvs = dUEdUE = 0,
(23)

dustS = dMEdUE =0.

There are several advantages to this choice. First, stochastic
calculations are greatly simplified. For instance, using stan-
dard techniques for a system coupled to a heat bath [28,29]
and Ito stochastic rules, we can show that D and D, depend
only on the time difference 7=(r—s) and are identified with
the standard correlation functions [3] (see the Appendix)

D(7)= 2ﬁf+w dw J(w)sin(w7), (24)
0
D(7) = Zﬁfm dow J(w)coth(hw/2kgT)cos(wr), (25)
0
where
2
J) =3 -0, (26)

denotes the spectral density. No approximation are made to
obtain the above equations; therefore the average over differ-
ent stochastic paths matches the exact evolution of the sys-
tem, including all non-Markovian effects.

A. Equivalent stochastic Schrodinger equation formulation

Several works, based on the influence functional method
[5,19,30] have led to similar stochastic equations for the re-
duced density. For instance, the authors of Refs. [19,30] use
an evolution of (B(#)); where the second term in Eq. (18) is
absent. As demonstrated below, this term is of crucial impor-
tance for applications. In Ref. [5] and in Refs. [21-23] a
stochastic formulation of the exact system+environment is
given in terms of the stochastic Schrodinger equation tech-
nique. Thanks to the additional stochastic rules (23), Eq. (17)
also has its SSE counterpart, where the system densities are
replaced by ps=|;){¢,| and wave functions evolve accord-
g to

dl¢) = (%Hs(l) +d&[Q— <Q(t)>s]> 1),
(27)
d{¢| = <¢2|<— ?_ﬁtHs(t) +d\[Q - (Q(t»s]) ,

where the bath effect is again incorporated through the
mean-field kernel.
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FIG. 1. (Color online) Evolution of (o.(t))s [assuming
(0.(0))s=1] as a function of time obtained through the average of
paths simulated with Eq. (17) with the Markovian process described
by Egs. (21) and (23) and memory functions given by Egs. (24) and
(25). We assume that J(w)=7;wAf/(Af,+ w?). Two sets of param-
eters are used. In both cases, A.=5wq, kzgT=2hwy, and fic=0. The
filled and open circles correspond, respectively, to m7=0.2Aw, and
4fiwy and are compared, respectively, with the solid and dashed
lines obtained with the same set of parameters in Fig. 2 of Ref. [30].
Results are obtained with 2 X 10* trajectories.

B. Application to the spin-boson model

We illustrate the proposed technique using the spin-boson
model. This model can be regarded as one of the simplest
quantum open system coupled to a heat bath [31] that could
not be integrated exactly. In addition, it has often been used
as a benchmark for theories of open quantum systems
[1,5,14,16,19,31,32]. The system and coupling Hamiltonians
are respectively chosen as

hs=hwyo,+heo, h=0,9B,
where the {0}, , . are the standard Pauli matrices. In the
spin-boson model, the numerical solution of Eq. (17) for the
system density, is equivalent to solving three nonlinear
coupled equations for the (o;)s. Figure 1 shows examples of
the dynamical evolution of {o.(r))s obtained using Eq. (17)
and averaging over stochastic trajectories both for weak
(filled circles) and strong (open circles) coupling. Results are
compared with the hierarchical approach proposed in Ref.
[30]. This deterministic approach provides an alternative a
priori exact formulation of open quantum system dynamics
and was originally motivated by numerical difficulties en-
countered in the stochastic theory proposed in Ref. [19].
Such difficulties do not occur in the present simulation and
many fewer stochastic trajectories seem to be needed to ac-
curately describe the dynamical evolution. Only 2 X 10* tra-
jectories have been used to obtained Fig. 1, leading to statis-
tical errors close to zero (for comparison, see the discussion
in [24]). The computer time for the two figures was less than
an hour for the weak-coupling case up to several hours for
the strong-coupling case on a standard personal computer.
The difference in computing time comes from the fact that a
smaller numerical time step should be used as the coupling
strength increases to achieve good numerical accuracy, the
main difficulty being to properly evaluate the time integrals

PHYSICAL REVIEW E 77, 041126 (2008)

kel =4he kgl =20he

< 0, (1)>s
o

: s s
0N S N = N S U =

< 0, (t)>s
=

1
<>

=]
[y
c L
=]
[y
=]

5 5
te te

FIG. 2. (Color online) Average evolution of (o(1))s (filled
circles) and (o (1)) (filled squares) as a function of time. The initial
condition corresponds to {(o(0))s=1. In all cases, hwy=0 and A,
=10e. kzT=4he and 20he are used, respectively, for calculations
presented in the left and right columns. In both cases, the upper
panels present results for weak coupling (77=0.2%¢) while in the
lower panels a stronger coupling is considered (77=1.0%e). Simu-
lations have been performed with 4 X 10* trajectories. For all cases,
dynamical evolutions of the x and y spin components obtained with
the TCL2 method [3,13] are displayed by solid and dashed lines,
respectively.

in Eq. (18). Denoting the time step by Az, Af wy=1.2
X 1073 and 2.2 X 10~ have been used for weak and strong
coupling, respectively.

In the weak-coupling case, the results of our stochastic
scheme displayed in Fig. 1 (filled circles) perfectly match the
result of Ref. [30] (solid line). In contrast to Ref. [24], sta-
tistical errors remain small even for long-time evolution. The
difference in numerical accuracy can be assigned to the sec-
ond term in Eq. (18) which turns out to be crucial for nu-
merical implementation. Stochastic simulations for strong-
coupling parameters (open circles) slightly differ from the
results obtained with the hierarchical approach in Ref. [30].
The numerical convergence of the stochastic simulation pre-
sented in Fig. 1 has been checked. Therefore, the difference
might be due to the fact that the numerical accuracy depends
on the truncation scheme used in the hierarchy, even though
the method of Ref. [30] is exact.

C. Comparison with the time-convolutionless method

The possibility of simulating exactly the system dynamics
can also serve as a benchmark for other methods. For in-
stance, we compared the exact stochastic scheme with the
approximate time-convolutionless (TCL) projection operator
method of Refs. [3,13]. Figure 2 presents the results of the
exact stochastic simulation compared with the TCL2 method
applied to the spin-boson model in Ref. [13]. Here, TCL2 (or
more generally TCLx) refers to the TCL technique with a
second order (“x” order) truncation in terms of the interac-
tion B. In this figure different cases corresponding to either
the low- or high-temperature regime and weak or strong cou-
pling are presented. We see that the best agreement is ob-
tained in the weak-coupling and high-temperature case. In
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FIG. 3. (Color online) Results obtained in the weak- and strong-
coupling cases with the exact stochastic simulation using complex
noises and non-Hermitian (filled circles) are compared with the ap-
proximate simulation (open circles) using real noise and Hermitian
densities along each path. In this figure, the values of the param-
eters are the same as in Fig. 1.

general, the TCL2 method compares well with the exact
simulation if the coupling is rather small. As the coupling
increases (lower panels of Fig. 2), the difference between the
TCL technique and the exact method increases. Note that the
TCL method seems to systematically underestimate the
damping. Note finally that the use of higher order truncation
in the interaction, for instance TCL4 instead of TCL2, does
not improve the comparison.

D. Discussion of approximate system evolution obtained
with real noise and Hermitian system densities in stochastic
evolution

The applications presented above use specific constraints
on the Markovian process given by Eqgs. (23). This prescrip-
tion greatly simplifies the stochastic calculus. For instance,
simple exact expressions have been obtained for D(z,s) and
D,(t,s) when the system is coupled to a heat bath of har-
monic oscillators [Egs. (24) and (25)]. The main conse-
quence of Egs. (23) is that dug; and dvg, should be complex
stochastic variables leading to non-Hermitian densities along
the paths. As illustrated above, such a stochastic process
could be used to simulate exactly the reduced density evolu-
tion. The main disadvantage of non-Hermitian densities is,
however, that system observables could hardly be inter-
preted. We discuss here the possibility of performing sto-
chastic evolution of reduced Hermitian densities.

Relaxing the constraints given by Egs. (23) authorizes us
to choose dug,; and dvug, as real stochastic variables, which
automatically ensures that pg(r) and pg(7) remain Hermitian.
This alternative has, however, two major drawbacks. First,
one can no longer have an equivalent SSE picture. Second,
while D(z,s) still identifies with Eq. (24), no simple exact
expression can be worked out for D((¢,s). However, since
this kernel is a functional of pg(s), a hierarchy of more and
more accurate approximations could be obtained by succes-
sive replacements of pg(s) into Eq. (19) by its integral ex-
pression, Eq. (16). In the present work, we concentrate on the
simplest case where pg(s) is replaced by pg(s)
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FIG. 4. (Color online) Average evolution of (o (7)) (filled
circles) and (o, (t))s (filled squares) as a function of time obtained
with the exact stochastic scheme using the same sets of parameters
as in Fig. 2. In each case, dynamical evolutions of the x and y spin
components obtained with the approximate stochastic simulation
using real noise are displayed with open circles and open squares,
respectively.

= Upg(t,10)pr(to) UL(t,1,) in the time integral of the memory
kernel. In this limit, D,(s,7) also reduces to Eq. (25). Be-
cause of this approximation, the stochastic process is no
longer exact. Figure 3 presents a comparison of the exact
stochastic simulation obtain with complex noise (filled
circles) and the approximate case with real noise (open
circles). The parameters of the spin-boson model are the
same as in Fig. 1. This figure shows that the approximate
scheme with real noise is very close to the exact simulation
even in the strong-coupling limit. In the latter case, only at
very large time do the two simulations start to deviate
slightly from one another. For completeness, approximate
stochastic simulations obtained for the cases presented in
Fig. 2 are compared to the exact scheme in Fig. 4. We see
that, except for the weak-coupling and low-temperature case,
the approximate simulation is very close to the exact result.
It is worth mentioning that the approximate simulation pre-
sented here uses the simplest prescription for D, (s, 7). There-
fore, improved description could a priori be obtained using
better approximations of D;(s,f) with the method described
above. This example is very encouraging and provides a
method to simulate open systems with a stochastic process
that preserves the Hermitian properties of the system density.

IV. CONCLUSION

The results obtained with the stochastic theory for the
spin-boson model are very encouraging. The theory turns out
to be accurate to simulate not only short- but also long-time
dynamics and does not seem to suffer from the numerical
instability quoted in Ref. [24]. It is worth mentioning that
optimization techniques proposed in Ref. [21], which are not
used here, can be implemented to further reduce the number
of stochastic paths. Besides the numerical aspects, a link
with classical dissipation dynamics could be easily made, as
in Ref. [5].

Our stochastic approach could be generalized to any ini-
tial conditions that can be written as a mixture of separable
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densities, i.e., D(to)==,W,D"(t,) with D"=p}i® p} where
the W, are complex coefficients. Then the complete exact
dynamics is recovered by both averaging over trajectories
starting from each D"(r=0) individually and averaging over
the initial conditions. The theory is also not restricted to real
time evolution. Statistical properties of the system
+environment can be studied by considering imaginary time
propagation, i.e., idt/fi— (. Imaginary time propagation
leads naturally to densities written as a mixture of separable
densities and can then serve as initial conditions for real time
evolution. By combining both imaginary and real time
propagation, general physical problems similar to those de-
picted in Ref. [5] can be addressed. The main limitation of
the technique is clearly the choice of coupling operator B,
which should give simple memory functions [Egs. (19) and
(20)]. It is, however, worth mentioning that most of the cou-
pling operators used in the context of open quantum systems
are already in this category [1,3,9,12]. We believe that the
stochastic theory presented in this paper can be a valuable
tool to access exactly the dynamics of more complex open
quantum systems. We presented here specific applications to
systems coupled to a heat bath. The approach can, however,
be applied to various types of environments and couplings,
which might be of great interest in addressing dissipation,
measurement, and/or decoherence problems in quantum sys-
tems.
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APPENDIX: PROOF OF EQ. (18) FOR A HEAT BATH OF
HARMONIC OSCILLATORS

We give here a proof of Eq. (18) where D and D, are
identified with Egs. (24) and (25). The environment is as-
sumed to be a set of harmonic oscillators, labeled by 7, as-
sociated with creation and annihilation (aj,,an), i.e.,

1
H=> ﬁwn<alan + 5) .

(A1)

If thermal equilibrium is initially assumed, the environment
density is written as a product of densities of each oscillator,
pe=I1,p,, where each density can be written as Gaussian
operators (see, for instance, [12]) determined by the first and
second moments of (ajl,a,,). The time evolution of the envi-
ronment is given by Eq. (10) where B=-X,«,x, and where
the fluctuating variables satisfy [according to Eq. (23)]

The above prescription and the specific form of B induce
important simplifications listed below. First, the initial prod-
uct form of the environment density is preserved along the
stochastic paths where each oscillator density satisfies
Tr(p,)=1 and where for each pair of densities d(p,p,,
=p,dp,,+dp,p,,- Second, due to the linear coupling operator,
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the Gaussian nature of the initial densities is also preserved
along the paths. Therefore, we can equivalently solve the
density equation of motion or follow the first and second
moments of each (a a,) in time. Here we consider the sec-
ond strategy.

From the pp evolution, the equation of motion of each
pair (al):Tr(pEaj;) and {a,)=Tr(pga,) reads

n’

d{a,) =~ iw,dKa, >+ C Q) + e {dé ol (1) + o (1) + 1]

+dN (1) + 0(_”_)(t)]},
(A3)

dla)) = +iw,di{a’) - —c AQ) + . {deL (1) + o\ (1)]

+d\ (1) + () + 17},

where we have introduced the notatlon ¢, =—kK,/\27, and

n,=m,w,/ . Here, O'E:’Jr), o, and ol ) denote the second mo-
T

ments of the a,,a, operators:

ol =(afa,) — (a,Xa}y = o) -
0_(_n_) = <anan> - <an><an>’

o) =(a,a}) ~ (a)Xay).

According to the stochastic environment dynamics, we can
show that these moments simply evolve as

da'(_”_) =-— Ziwndta'(_’i),
do'\V = + 2iw,dio'"), (A4)

do" =0.

Since we assume that each oscillator is initially at thermal
equilibrium, we deduce that the second moments are con-
stant in time with o (¢)= (")(t) =0, while o'(")(t) ")+1
=[N(w,)+1]. Here, we have introduced the standard function
[12] [2N(w,)+1]=coth[w,/(2kzT)]. Substituting in Eqs.
(A3) and (A4) and using standard integration techniques [3]
we finally obtain

(a,(0) = e a,(0)) + 2 f e NQ(s))ds
mJo

+c, f t =N dER(s)[N(@,) + 1]+ dhpl(s)N(,)},

0

1

() =ermal(on < [ mi-gispas

0

+c, f e nNdg()N(w,) + dNp(s)[N(w,) + 17}
0

(AS)

Accordingly, each position operator entering in (B(#)) reads
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,L[<an(0)>e"“”"’ +{(a(0))e* ']+
V27,

(x, (1) =

Kn

27,

Ky

. f sin[w,(r = 5) KQ(s))ds,

PHYSICAL REVIEW E 77, 041126 (2008)

0

- f {cos[w,(t = $)I[2N(w,) + 11[déx(s) + dNp(s)] = i sin[w,(t = 5)][déx(s) - dNg(s)]}.
0

Assuming the initial conditions {a,(0))=(a(0))=0, substituting in the expression of (B(f))=-3,«,(x,(1)), and introducing the
spectral density [Eq. (26)], we finally recover Eq. (18) where D and D, are, respectively, given by Egs. (24) and (25).
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